This is default featured slide 1 title

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam. blogger theme by Premiumblogtemplates.com

This is default featured slide 2 title

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam. blogger theme by Premiumblogtemplates.com

This is default featured slide 3 title

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam. blogger theme by Premiumblogtemplates.com

This is default featured slide 4 title

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam. blogger theme by Premiumblogtemplates.com

This is default featured slide 5 title

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam. blogger theme by Premiumblogtemplates.com

Monday, 21 August 2017

Hai semuanya, pada kesempatan kali ini saya akan menjelaskan beberapa poin yang terdapat pada abstrak sebuah dokumen atau laporan dan juga menunjukan contohnya yg saya ambil dari link: http://ieeexplore.ieee.org/document/7353157/. Berikut merupakan poin poin yg terdapat pada abstraksi sebuah laporan atau dokumen.

  • .       Latar Belakang

Latar belakang merupakan penjelasan tentang sesuatu permasalahan yang akan kita angkat menjadi sebuah rumusan masalah dan menyelesaikannya. Contohnya seperti kalimat yg digaris bawahi berikut ini:
Edge-based active contour models are effective in segmenting images with intensity inhomogeneity but often fail when applied to images containing poorly defined boundaries, such as in medical images. Traditional edge-stop functions (ESFs) utilize only gradient information, which fails to stop contour evolution at such boundaries because of the small gradient magnitudes.To address this problem, we propose a framework to construct a group of ESFs for edge-based active contour models to segment objects with poorly defined boundaries. In our framework, which incorporates gradient information as well as probability scores from a standard classifier, the ESF can be constructed from any classification algorithm and applied to any edge-based model using a level set method. Experiments on medical images using the distance regularized level set for edge-based active contour models as well as the k-nearest neighbours and the support vector machine confirm the effectiveness of the proposed approach.

  • .    Tujuan Penelitian

Tujuan Penelitian merupakan solusi penyelesaian atau hasil akhir yang akan kita dapatkan. Contohnya seperti kalimat yg digaris bawahi berikut ini:
Edge-based active contour models are effective in segmenting images with intensity inhomogeneity but often fail when applied to images containing poorly defined boundaries, such as in medical images. Traditional edge-stop functions (ESFs) utilize only gradient information, which fails to stop contour evolution at such boundaries because of the small gradient magnitudes.To address this problem, we propose a framework to construct a group of ESFs for edge-based active contour models to segment objects with poorly defined boundaries. In our framework, which incorporates gradient information as well as probability scores from a standard classifier, the ESF can be constructed from any classification algorithm and applied to any edge-based model using a level set method (method). Experiments on medical images using the distance regularized level set for edge-based active contour models as well as the k-nearest neighbours and the support vector machine confirm the effectiveness of the proposed approach.

  • .       Metode yang digunakan

Merupakan tahapan atau proses  yang akan digunakan untuk menyelesaikan permasalahan. Contohnya seperti kalimat yg digaris bawahi berikut ini:
Edge-based active contour models are effective in segmenting images with intensity inhomogeneity but often fail when applied to images containing poorly defined boundaries, such as in medical images. Traditional edge-stop functions (ESFs) utilize only gradient information, which fails to stop contour evolution at such boundaries because of the small gradient magnitudes.To address this problem, we propose a framework to construct a group of ESFs for edge-based active contour models to segment objects with poorly defined boundaries. In our framework, which incorporates gradient information as well as probability scores from a standard classifier, the ESF can be constructed from any classification algorithm and applied to any edge-based model using a level set method. Experiments on medical images using the distance regularized level set for edge-based active contour models as well as the k-nearest neighbours and the support vector machine confirm the effectiveness of the proposed approach.

  • .    Kesimpulan/Hasil

Merupakan Hasil yg kita dapatkan dari peyelesaian masalah tersebut.
Contohnya seperti kalimat yg digaris bawahi berikut ini:
Edge-based active contour models are effective in segmenting images with intensity inhomogeneity but often fail when applied to images containing poorly defined boundaries, such as in medical images. Traditional edge-stop functions (ESFs) utilize only gradient information, which fails to stop contour evolution at such boundaries because of the small gradient magnitudes.To address this problem, we propose a framework to construct a group of ESFs for edge-based active contour models to segment objects with poorly defined boundaries. In our framework, which incorporates gradient information as well as probability scores from a standard classifier, the ESF can be constructed from any classification algorithm and applied to any edge-based model using a level set method. Experiments on medical images using the distance regularized level set for edge-based active contour models as well as the k-nearest neighbours and the support vector machine confirm the effectiveness of the proposed approach.



Berikut merupakan penjelasan mengenai poin poin apa saja yang harus ada pada abstrak.





visitor

Flag Counter

Popular Posts